گزینه های دودویی

اشکال فراکتالی

تجزیه و تحلیل فراکتال در واقع می‌تواند به اشکال فراکتالی تمایز بین آثار جعلی جکسون پولاک و آثار واقعی وی کمک کند. حتی نحوه ردیابی چشم انسان از یک نقاشی یا نحوه پردازش مغز ما از اطلاعات به دست آمده را می‌توان به عنوان داشتن یک الگوی فراکتال توصیف کرد.

فراکتال چیست؟

چند سؤال:
اگر این شکل قرمز را شکل پایه در نظر بگیریم ، در شکل آبی چند نمونه از آن وجود دارد؟
آیا مربع‌ها خود متشابه اند ؟ یعنی می‌توان با مربعهای اشکال فراکتالی کوچکتر ، مربع بزرگی ساخت. شش ضلعی‌ها چطور؟
آیا همه دایره‌ها متشابه اند ؟ آیا خود متشابه هم هستند؟

تشکیل از راه تکرار Iterative formation
مقصود از تشکیل از راه تکرار چیست؟ یعنی برای درست کردن یک فراکتال می‌توانیم یک شکل معمولی هندسی ( مثلاً یک خط) را برداریم و با آن یک شکل پیچیده تر بسازیم. بعد با آن شکل به دست آمده شکل پیچیده تری بسازیم ، و همین طور به این کار ادامه دهیم اشکال فراکتالی به این طریق به وجود اشکال فراکتالی می‌آیند و برنامه های کامپیوتری متعددی بر ایجاد آنها نوشته شده است. هر کدام از آنها هم اسم و رسمی برای خود دارند مثلاً مثلث سیرپنیکی که قبلاً دیدید یا : اشکال فراکتالی
• دانه برف کخ
• فرش سرپینسکی
• اژدهای هرتر - های وی
• مجموعه های جولیا و مندلبروت
ابعاد کسری fractional dimension
همانطور که می‌دانید ، یک نقطه بعد ندارد.
یک خط ، شکلی یک بعدی است
یک صفحه ، دو بعد دارد.
ودر آخر شکلهای حجیم ، سه بعد دارند.
اما فراکتال‌ها می‌توانند بعد کسری داشته اشکال فراکتالی باشند ! مثلاً 6/1 یا 2/4 . چطور چنین چیزی امکان دارد؟
اگر یک پاره خط را نصف کنیم چه پیش می‌آید ؟
حالا دو خط داریم که درست مثل هم هستند.
اگر هر دو بعد یک مربع را نصف کنیم چطور ؟ حالا چهار مربع هم اندازه داریم.
با نصف کردن هر سه بعد یک مکعب به هشت مکعب کوچکتر اشکال فراکتالی می‌رسیم.
به جدول زیر دقت کنید:

شکل بعد تعداد اشکال متشابه حاصله
پاره خط 1 2 1 =2
مربع 2 2 2 =4
مکعب 3 2 3 =8

چه الگویی وجود دارد ؟ به نظر می‌رسد که بعد ، همان " توان " است. یعنی برای پیدا کردن تعداد اشکال حاصله باید 2 را به توان بعد آن شکل برسانیم.
سپس می‌توانیم یک خط دیگر به این جدول اضافه کنیم:

هر شکل خود متشابه d n= 2 d

دوباره به مثلث آشنای خودمان نگاه کنید.

If your browser recognized the applet tag, you would see the Sierpinski Triangle applet here.

اگر هر ضلع را نصف کنیم چند مثلث درست می‌شود؟ به خاطر داشته باشید که مثلثهای سفید جزو مثلث سیرپنیکی نیستند. با نصف کردن هر ضلع به سه مثلث می‌رسیم یعنی
:

3 عددی است بین 2 1 و2 2 . کسانی که لگاریتم بدانند ، به راحتی این مسأله را حل می‌کنند. خب می‌بینید که این عدد 5849. 1 یک عدد کاملاً کسری است !
برای مطالعه بیشتر می‌توانید به آدرسهای زیر مراجعه کنید:

مقالات مرتبط

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

برو به دکمه بالا